Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2965, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580652

RESUMO

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information. VG3s receive inputs from all nearby bipolar cell types but exhibit a strong preference for the fast type 3a bipolar cells. By comparing input distributions to VG3 dendrite responses, we show that VG3 dendrites have a short functional length constant that likely depends on inhibitory shunting. This model predicts that RGCs that extend dendrites into the middle layers of the inner plexiform encounter VG3 dendrites whose responses vary according to the local bipolar cell response type.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Células Amácrinas/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/metabolismo , Microscopia Eletrônica , Dendritos/fisiologia
2.
Front Neural Circuits ; 16: 753496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338333

RESUMO

Correlated light and electron microscopy (CLEM) can be used to combine functional and molecular characterizations of neurons with detailed anatomical maps of their synaptic organization. Here we describe a multiresolution approach to CLEM (mrCLEM) that efficiently targets electron microscopy (EM) imaging to optically characterized cells while maintaining optimal tissue preparation for high-throughput EM reconstruction. This approach hinges on the ease with which arrays of sections collected on a solid substrate can be repeatedly imaged at different scales using scanning electron microscopy. We match this multiresolution EM imaging with multiresolution confocal mapping of the aldehyde-fixed tissue. Features visible in lower resolution EM correspond well to features visible in densely labeled optical maps of fixed tissue. Iterative feature matching, starting with gross anatomical correspondences and ending with subcellular structure, can then be used to target high-resolution EM image acquisition and annotation to cells of interest. To demonstrate this technique and range of images used to link live optical imaging to EM reconstructions, we provide a walkthrough of a mouse retinal light to EM experiment as well as some examples from mouse brain slices.


Assuntos
Neurônios , Animais , Camundongos , Microscopia de Fluorescência/métodos , Microscopia Eletrônica de Varredura
3.
Vision Res ; 44(28): 3389-400, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15536007

RESUMO

Using whole cell recordings, we studied excitatory and inhibitory postsynaptic currents (EPSCs, IPSCs) in feedforward (FF) and feedback (FB) circuits between areas V1 and LM (lateromedial) in developing mouse visual cortex. We found that in mice reared with normal visual experience, FF and FB synapses onto layer 2/3 pyramidal neurons develop equal but submaximal strengths whose EPSCs are increased by monocular lid suture. In contrast, the development and experience-dependence of FF- and FB-IPSCs is pathway-specific. The difference develops during the critical period by strengthening FF-IPSCs, while keeping FB-IPSC amplitudes constant. Monocular lid suture increases FB-IPSCs but does not affect FF-IPSCs.


Assuntos
Retroalimentação/fisiologia , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia , Córtex Visual/crescimento & desenvolvimento , Animais , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Tempo de Reação/fisiologia , Privação Sensorial/fisiologia , Sinapses/fisiologia , Visão Monocular/fisiologia , Córtex Visual/fisiologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia
4.
J Comp Neurol ; 464(4): 426-37, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-12900914

RESUMO

Cortical inhibition is determined in part by the organization of synaptic inputs to gamma-aminobutyric acidergic (GABAergic) neurons. In adult rat visual cortex, feedforward (FF) and feedback (FB) connections that link lower with higher areas provide approximately 10% of inputs to parvalbumin (PV)-expressing GABAergic neurons and approximately 90% to non-GABAergic cells (Gonchar and Burkhalter [1999] J. Comp. Neurol. 406:346-360). Although the proportions of these targets are similar in both pathways, FF synapses prefer larger PV dendrites than FB synapses, which may result in stronger inhibition in the FF than in the FB pathway (Gonchar and Burkhalter [1999] J. Comp. Neurol. 406:346-360). To determine when during postnatal (P) development FF and FB inputs to PV and non-PV neurons acquire mature proportions, and whether the pathway-specific distributions of FF and FB inputs to PV dendrites develop from a similar pattern, we studied FF and FB connections between area 17 and the higher order lateromedial area (LM) in visual cortex of P15-42 mice. We found that the innervation ratio of PV and non-PV neurons is mature at P15. Furthermore, the size distributions of PV dendrites contacted by FF and FB synapses were similar at P15 but changed during the third to sixth postnatal weeks so that, by P36-42, FF inputs preferred thick dendrites and FB synapses favored thin PV dendrites. These results suggest that distinct FF and FB circuits develop after eye opening by rearranging the distribution of excitatory synaptic inputs on the dendritic tree of PV neurons. The purpose of this transformation may be to adjust differentially the strengths of inhibition in FF and FB circuits.


Assuntos
Camundongos/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/fisiologia , Axônios/fisiologia , Senescência Celular/fisiologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Retroalimentação , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Parvalbuminas/metabolismo , Córtex Visual/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...